Photooxidative decomposition and defluorination of perfluorooctanoic acid (PFOA) using an innovative technology of UV–vis/ZnxCu1-xFe2O4/oxalic acid

Autor: Mallikarjuna N. Nadagouda, Endalkachew Sahle-Demessie, Bineyam Mezgebe, Sanny Verma
Rok vydání: 2021
Předmět:
Zdroj: Chemosphere. 280:130660
ISSN: 0045-6535
DOI: 10.1016/j.chemosphere.2021.130660
Popis: Per- and polyfluoroalkyl substances (PFAS) are a large group of perfluorinated organic molecules that have been in use since the 1940s for industrial, commercial, and consumer applications. PFAS are a growing concern because some of them have shown persistent, bioaccumulative and toxic effects. Herein, we demonstrate an innovative technology of UV–vis/ZnxCu1-xFe2O4/oxalic acid for the degradation of perfluorooctanoic acid (PFOA) in water. The magnetically retrievable nanocrystalline heterogeneous ferrite catalysts, ZnxCu1-xFe2O4 were synthesized using a sol-gel auto-combustion process followed by calcination at 400 °C. The combination of ZnxCu1-xFe2O4 and oxalic acid generate reactive species under UV light irradiation. These reactive species are then shown to be capable of the photodegradation of PFOA. The degree of degradation is tracked by identifying transformation products using liquid chromatography coupled with quadrupole time-of-flight mass spectroscopy (LC-QTOF-MS).
Databáze: OpenAIRE