Evaluation of proton-conducting membranes for use in a sulfur dioxide depolarized electrolyzer

Autor: Héctor R. Colón-Mercado, Simon G. Stone, Mark C. Elvington, David T. Hobbs, Steve McCatty
Rok vydání: 2010
Předmět:
Zdroj: Journal of Power Sources. 195:2823-2829
ISSN: 0378-7753
DOI: 10.1016/j.jpowsour.2009.11.031
Popis: The chemical stability, sulfur dioxide transport, ionic conductivity, and electrolyzer performance have been measured for several commercially available and experimental proton exchange membranes (PEMs) for use in a sulfur dioxide depolarized electrolyzer (SDE). The SDEs function is to produce hydrogen by using the Hybrid Sulfur (HyS) Process, a sulfur-based electrochemical/thermochemical hybrid cycle. Membrane stability was evaluated using a screening process where each candidate PEM was heated at 80 °C in 60 wt% H 2 SO 4 for 24 h. Following acid exposure, chemical stability for each membrane was evaluated by FTIR using the ATR sampling technique. Membrane SO 2 transport was evaluated using a two-chamber permeation cell. SO 2 was introduced into one chamber whereupon SO 2 transported across the membrane into the other chamber and oxidized to H 2 SO 4 at an anode positioned immediately adjacent to the membrane. The resulting current was used to determine the SO 2 flux and SO 2 transport. Additionally, membrane electrode assemblies (MEAs) were prepared from candidate membranes to evaluate ionic conductivity and selectivity (ionic conductivity vs. SO 2 transport) which can serve as a tool for selecting membranes. MEAs were also performance tested in a HyS electrolyzer measuring current density vs. a constant cell voltage (1 V, 80 °C in SO 2 saturated 30 wt% H 2 SO 4 ). Finally, candidate membranes were evaluated considering all measured parameters including SO 2 flux, SO 2 transport, ionic conductivity, HyS electrolyzer performance, and membrane stability. Candidate membranes included both PFSA and non-PFSA polymers and polymer blends of which the non-PFSA polymers, BPVE-6F and PBI, showed the best selectivity.
Databáze: OpenAIRE