Energy Moments in Time and Frequency for Two-Scale Difference Equation Solutions and Wavelets

Autor: Lars F. Villemoes
Rok vydání: 1992
Předmět:
Zdroj: SIAM Journal on Mathematical Analysis. 23:1519-1543
ISSN: 1095-7154
0036-1410
DOI: 10.1137/0523085
Popis: This paper indicates how to find energy moments in direct and Fourier space of a solution to the functional equation $u(x) = \sum_{k = 0}^{N - 1} {2c_k u(2x - k)} $ and shows that the Sobolev regularity of u is determined by the spectral radius of a matrix defined from the coefficients $(c_k )$. The results are applied to compactly supported orthonormal wavelets.
Databáze: OpenAIRE