Energy Moments in Time and Frequency for Two-Scale Difference Equation Solutions and Wavelets
Autor: | Lars F. Villemoes |
---|---|
Rok vydání: | 1992 |
Předmět: | |
Zdroj: | SIAM Journal on Mathematical Analysis. 23:1519-1543 |
ISSN: | 1095-7154 0036-1410 |
DOI: | 10.1137/0523085 |
Popis: | This paper indicates how to find energy moments in direct and Fourier space of a solution to the functional equation $u(x) = \sum_{k = 0}^{N - 1} {2c_k u(2x - k)} $ and shows that the Sobolev regularity of u is determined by the spectral radius of a matrix defined from the coefficients $(c_k )$. The results are applied to compactly supported orthonormal wavelets. |
Databáze: | OpenAIRE |
Externí odkaz: |