Extremely effective broadband low-frequency sound absorption with inhomogeneous micro-perforated panel (iMPP) backed with spider-web designed cavities
Autor: | Faisal Rafique, Jiu Hui Wu, Syed Murawat Abbas Naqvi, Muhammad Waqas, Chong Rui Liu |
---|---|
Rok vydání: | 2022 |
Předmět: | |
Zdroj: | Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications. 237:843-858 |
ISSN: | 2041-3076 1464-4207 |
DOI: | 10.1177/14644207221126810 |
Popis: | Low-frequency wideband noise reduction has posed a significant problem to the scientific and technical communities in recent years. A single layer of a parallel-arranged inhomogeneous micro-perforated panel (iMPP) coupled with spider-web designed cavities is offered as a composite acoustic structure in this paper. Three different spider-web shapes have been designed and studied, i.e. circular, octagonal, and square. By controlling the different inhomogeneous patterns, perforation ratio, the thickness of iMPP, and back cavity depths, a broader multipeak low-frequency sound-absorbing performance equivalent to different resonant frequencies can be achieved. To anticipate the sound absorption coefficient of the new design, both theoretical analysis and finite-element method (FEM) simulation are executed. The predicted and FEM simulation sound absorption results of the new composite structure are verified in the experimental investigation using a square-designed sound impedance tube. By a subwavelength thickness of just 100 mm, a highly effective low-frequency broadband sound-absorbing composite structure is successfully attained by integrating many inhomogeneous MPP unit cells supported with spider-web-designed cavities. The average sound absorption coefficient is over 90% ( α = 0.94) within the bandgap of 230 Hz to 470 Hz. Compared to traditional sound-absorbing materials, the composite structure comprises inhomogeneous MPP coupled with spider-web-designed cavities, which may provide good absorption performance while maintaining a modest and robust construction for active low-frequency noise suppression. |
Databáze: | OpenAIRE |
Externí odkaz: |