Peregrine solitons and gradient catastrophes in discrete nonlinear Schrödinger systems
Autor: | Panos Kevrekidis, C. Hoffmann, Dimitri J. Frantzeskakis, Efstathios G. Charalampidis |
---|---|
Rok vydání: | 2018 |
Předmět: |
Physics
Integrable system General Physics and Astronomy Type (model theory) 01 natural sciences 010305 fluids & plasmas Nonlinear system symbols.namesake Nonlinear Sciences::Exactly Solvable and Integrable Systems Amplitude 0103 physical sciences symbols Peregrine soliton Limit (mathematics) Rogue wave 010306 general physics Nonlinear Sciences::Pattern Formation and Solitons Schrödinger's cat Mathematical physics |
Zdroj: | Physics Letters A. 382:3064-3070 |
ISSN: | 0375-9601 |
Popis: | In the present work, we examine the potential robustness of extreme wave events associated with large amplitude fluctuations of the Peregrine soliton type, upon departure from the integrable analogue of the discrete nonlinear Schrodinger (DNLS) equation, namely the Ablowitz–Ladik (AL) model. Our model of choice will be the so-called Salerno model, which interpolates between the AL and the DNLS models. We find that rogue wave events are drastically distorted even for very slight perturbations of the homotopic parameter connecting the two models off of the integrable limit. Our results suggest that the Peregrine soliton structure is a rather sensitive feature of the integrable limit, which may not persist under “generic” perturbations of the limiting integrable case. |
Databáze: | OpenAIRE |
Externí odkaz: |