Enhanced Stabilities and Production Yields of MAPbBr3 Quantum Dots and Their Applications as Stretchable and Self-Healable Color Filters

Autor: Jaemin Jung, Jaeyoung Jang, Eui Hyun Suh, Sung Hoon Noh, Kyeong Ho Lee, Jong Gyu Oh, Han Sol Yang
Rok vydání: 2021
Předmět:
Zdroj: ACS Applied Materials & Interfaces. 13:4374-4384
ISSN: 1944-8252
1944-8244
DOI: 10.1021/acsami.0c19287
Popis: Organic-inorganic hybrid CH3NH3PbBr3 (MAPbBr3) perovskite quantum dots (PQDs) are considered as promising and cost-effective building blocks for various optoelectronic devices. However, during centrifugation for the purification of these PQDs, commonly used polar protic and aprotic non-solvents (e.g., methanol and acetone) can destroy the nanocrystal structure of MAPbBr3 perovskites, which will significantly reduce the production yields and degrade the optical properties of the PQDs. This study demonstrates the use of methyl acetate (MeOAc) as an effective non-solvent for purifying as-synthesized MAPbBr3 PQDs without causing severe damage, which facilitates attainment of stable PQD solutions with high production yields. The MeOAc-washed MAPbBr3 PQDs maintain their high photoluminescence (PL) quantum yields and crystalline structures for long periods in solution states. MeOAc undergoes a hydrolysis reaction in the presence of the PQDs, and the resulting acetate anions partially replace the original surface ligands without damaging the PQD cores. Time-resolved PL analysis reveals that the MeOAc-washed PQDs show suppressed non-radiative recombination and a longer PL lifetime than acetone-washed and methanol-washed PQDs. Finally, it is demonstrated that a composite of the MAPbBr3 PQDs and a thermoplastic elastomer (polystyrene-block-polyisoprene-block-polystyrene) is feasible as a stretchable and self-healable green color filter for a white light-emitting diode device.
Databáze: OpenAIRE