On Multidimensional SDEs Without Drift and with A Time-Dependent Diffusion Matrix
Autor: | V. P. Kurenok, H. J. Engelbert |
---|---|
Rok vydání: | 2000 |
Předmět: | |
Zdroj: | Georgian Mathematical Journal. 7:643-664 |
ISSN: | 1572-9176 1072-947X |
DOI: | 10.1515/gmj.2000.643 |
Popis: | We study multidimensional stochastic equations where x o is an arbitrary initial state, W is a d-dimensional Wiener process and is a measurable diffusion coefficient. We give sufficient conditions for the existence of weak solutions. Our main result generalizes some results obtained by A. Rozkosz and L. Słomiński [Stochastics Stochasties Rep. 42: 199–208, 1993] and T. Senf [Stochastics Stochastics Rep. 43: 199–220, 1993] for the existence of weak solutions of one-dimensional stochastic equations and also some results by A. Rozkosz and L. Słomiński [Stochastic Process. Appl. 37: 187–197, 1991], [Stochastic Process. Appl. 68: 285–302, 1997] for multidimensional equations. Finally, we also discuss the homogeneous case. |
Databáze: | OpenAIRE |
Externí odkaz: |