Mineralogy and Fluid Inclusions of the Cunas Emerald Mine, Maripí, Boyacá, Colombia

Autor: Javier García-Toloza, Holman Rolando Alvarado González, Carlos Julio Cedeño Ochoa, Fernando Helí Romero Ordóñez, Andrés Felipe González-Durán, Luis Gabriel Angarita Sarmiento, Jimmy Rotlewicz Cohen
Rok vydání: 2021
Předmět:
Zdroj: Earth Sciences Research Journal. 25:139-156
ISSN: 2339-3459
1794-6190
Popis: The Cunas mine is currently one of the major producers of fine emeralds in Colombia; its emeralds typically display a magnificent green hue, which is highly appreciated in the world market. The mineralization is found in vanadium-rich black shales of the Muzo formation; emeralds occur in pockets within hydrothermal veins and breccias, consisting mostly of calcite, dolomite, albite, quartz, and minor pyrite, parisite-(Ce), and fluorite; hydrothermal alteration is pervasive and dominated by albitization and carbonatization. Emerald-hosted fluid inclusions are highly abundant and remarkably large and complex. Poly-phase inclusions are ubiquitous, occur both in emeralds and gangue minerals, and consist of two daughter crystals (typically halite and calcite or siderite; exceptionally parisite-(Ce)), a liquid brine, a CO2-N2-CH4-rich gas bubble, and occasionally minor liquid CO2. Vapor-rich inclusions were observed in quartz, and two-phase inclusions were identified in calcite and dolomite, thus suggesting a complex fluid evolution. Microthermometry analysis indicates the emerald-forming fluids were trapped at relatively low temperature ≈ 260-340°C and pressure ≈ 875-2400 kbar, with relatively high density —1.03 g/cm³—, and elevated salinity 39% NaCl eq. Wt.; other aqueous components detected include CaCl2, KCl, and FeCl2. Based on these data, we propose the emerald mineralization at the Cunas mine was originated by the mixing of two hydrothermal fluids of different sources; one fluid with high salinity derived from evaporite dissolution, responsible for the albitization of the host rocks; the second is a calcium-rich fluid evolved from connate waters, which was equilibrated by the interaction with calcareous and organic-rich wall rocks. As a result, emerald mineralization took place at structurally favorable sites where fluid mixing was promoted. The described geological and physicochemical features for the Cunas mine, are in agreement with an epigenetic sediment-hosted mineralization —Colombian-type— formed by the circulation and mixing of relatively low-temperature non-magmatic fluids.
Databáze: OpenAIRE