A Novel Texture Analysis Method Based on Reverse Biorthogonal Wavelet and Co-Occurrence Matrix Applied for Classification of Hepatocellular Carcinoma and Hepatic Hemangioma

Autor: Jia-Jun Qiu, Min Wang, Yue Wu, Bei Hui, Lin Ji, Jia Chen
Rok vydání: 2018
Předmět:
Zdroj: Journal of Medical Imaging and Health Informatics. 8:1835-1843
ISSN: 2156-7018
Popis: Purpose: To explore the feasibility of classifying hepatocellular carcinoma (HCC) and hepatic hemangioma (HEM) using texture features of non-enhanced computed tomography (CT) images, especially to investigate the effectiveness of a novel texture analysis method based on the combination of wavelet and co-occurrence matrix. Methods: 269 patients were retrospectively analyzed, including 129 HCCs and 140 HEMs. We cropped tumor regions of interest (ROIs) on non-enhanced CT images, and then used four texture analysis methods to extract quantitative data of the ROIs: gray-level histogram (GLH), gray-level co-occurrence matrix (GLCM), reverse biorthogonal wavelet transform (RBWT), and reverse biorthogonal wavelet co-occurrence matrix (RBCM). The RBCM was a novel method proposed in this study that combined wavelet transform and co-occurrence matrix. It discretized wavelet coefficient matrices based on the statistical characteristics of the training set. Thus, four sets of texture features were obtained. We then conducted classification studies using support vector machine on each set of texture features. 10-fold cross training and testing were used in the classifications, and their results were evaluated and compared. In addition, we tested the significant differences in the texture features of the RBCM method and explored the possible relationships between textures and lesion types. Results: The RBCM method achieved the best classification performance: its average accuracy was 82.14%; its average AUC (area under the receiver operating characteristic curve) was 0.8423. In addition, using the methods of GLH, GLCM, and RBWT, their average accuracies were 75.81%, 78.79%, and 78.8%, respectively. Conclusions: It indicates that the developed texture analysis methods are rewarding for computer-aided diagnosis of HCC and HEM based on non-enhanced CT images. Furthermore, the distinguishing ability of the proposed RBCM method is more pronounced.
Databáze: OpenAIRE