The Chemical Composition of Nigella sativa L. and Its Extract Effects on Lipid Peroxidation Levels, Total Antioxidant Capacity and Catalase Activity of the Liver and Kidney in Rats Under Stress

Autor: Ronak Kohzadi, Azam Soleimani, Saber Golkari, Minoo Ilkhanipour, Mohammad Saleh Rasoli, Marouf Khalili, Rahmat Mohammadi, Reza Heidari
Rok vydání: 2018
Předmět:
Zdroj: Gene, Cell and Tissue.
ISSN: 2345-6833
2345-6841
DOI: 10.5812/gct.61323
Popis: Background: Nigella sativa grain has a rich medical and religious history and consists of powerful chemical compounds that can have many effects on human health. In this study the effect of ethanolic extract of Nigella sativa on antioxidant properties has been investigated. Methods: The present study was carried out on 28 adult female Wistar rats (weighing 160 - 200 g) in 4 groups (7 mice per group). The 1st group (control group) received no treatment, the 2nd and 3rd groups were treated orally with alcoholic extract of Nigella sativa, at a dose of 400 mg / kg of body weight for 21 days. In addition to oral treatment, the 3rd group was also treated with immobilization stress, and the 4th group was only given immobilization stress. Malondialdehyde (MDA), Ferric Reducing / Antioxidant Power (FRAP) and Catalase (CAT) were measured in liver and kidney. Furthermore, the fatty acids profile of the extracted oil was studied. In addition, the proximate chemical composition and the contents of Calcium and phosphorous of Nigella sativa L. seeds was investigated to 5 times. The results of the study were analyzed using one-way ANOVA and mean comparison was conducted using Tukey’s test at significance level of (P < 0/05). Results: The results showed Nigella sativa to be rich in fatty acids, especially linoleic, oleic, palmitic, stearic, and linolenic acids were amounting (46.05 ± 1.3, 33.46 ± 1.02, 15.05 ± 0.65, 3.46 ± 0.13, 1.98 ± 0.04%, respectively. P < 0.05) and important elements as calcium (168 ± 10.9 mg/100g.P < 0.05) and phosphorous (73.02 ± 0 mg/100g, P < 0.05). Also, significantly reduced lipid peroxidation (MDA) but catalase activity increased in the Nigella sativa group and “Nigella sativa + stress” group, respectively, compared to the control and stress group (P < 0.05). Antioxidant capacity (FRAP) also significantly increased in Nigella sativa is sent to the control group (P < 0.05) in liver and kidney tissue. Conclusions: The results of this study show that extract of Nigella sativa to have necessary chemical characteristics increases antioxidant capacity. Moreover, reduces lipid peroxidation (Oxidative stress) and also the harmful effects of stress on the body’s tissues.
Databáze: OpenAIRE