Learning cluster-based structure to solve constraint satisfaction problems

Autor: Susan L. Epstein, Xingjian Li
Rok vydání: 2010
Předmět:
Zdroj: Annals of Mathematics and Artificial Intelligence. 60:91-117
ISSN: 1573-7470
1012-2443
Popis: The hybrid search algorithm for constraint satisfaction problems described here first uses local search to detect crucial substructures and then applies that knowledge to solve the problem. This paper shows the difficulties encountered by traditional and state-of-the-art learning heuristics when these substructures are overlooked. It introduces a new algorithm, Foretell, to detect dense and tight substructures called clusters with local search. It also develops two ways to use clusters during global search: one supports variable-ordering heuristics and the other makes inferences adapted to them. Together they improve performance on both benchmark and real-world problems.
Databáze: OpenAIRE