Measurements of branching fractions and asymmetry parameters of $\Xi^0_c\to \Lambda\bar K^{*0}$, $\Xi^0_c\to \Sigma^0\bar K^{*0}$, and $\Xi^0_c\to \Sigma^+K^{*-}$ decays at Belle

+Lambda+K*%28892%290%22&type=SU">Xi/c0 --> Lambda K*(892)0, Lambda, Xi/c0 --> Sigma0 K*(892)0, K*(892), branching ratio: ratio: measured, BELLE, electron positron: colliding beams, Xi/c: branching ratio: measured, electron positron: annihilation, Xi/c0 --> Sigma+ K*(892), Sigma, Xi/c: hadronic decay, error: statistical, KEK-B, talk: Prague 2020/07/30, High Energy Physics::Experiment, Astrophysics::Earth and Planetary Astrophysics, Astrophysics::Galaxy Astrophysics, asymmetry, experimental results -->
Popis: Using a data sample of 980 fb$^{-1}$ collected with the Belle detector at the KEKB asymmetric-energy $e^+e^-$ collider, we study the processes of $\Xi^0_c\to \Lambda\bar K^{*0}$, $\Xi^0_c\to \Sigma^0\bar K^{*0}$, and $\Xi^0_c\to \Sigma^+K^{*-}$ for the first time. The relative branching ratios to the normalization mode of $\Xi^0_c\to\Xi^-\pi^+$ are measured to be $${\cal B}(\Xi^0_c\to \Lambda\bar K^{*0})/{\cal B}(\Xi^0_c\to \Xi^-\pi^+)=0.18\pm0.02({\rm stat.})\pm0.01({\rm syst.}),$$ $${\cal B}(\Xi^0_c\to \Sigma^0\bar K^{*0})/{\cal B}(\Xi^0_c\to \Xi^-\pi^+)=0.69\pm0.03({\rm stat.})\pm0.03({\rm syst.}),$$ $${\cal B}(\Xi^0_c\to \Sigma^+K^{*-})/{\cal B}(\Xi^0_c\to \Xi^-\pi^+)=0.34\pm0.06({\rm stat.})\pm0.02({\rm syst.}),$$ where the uncertainties are statistical and systematic, respectively. We obtain %measure the branching fractions of $\Xi^0_c\to \Lambda\bar K^{*0}$, $\Xi^0_c\to \Sigma^0\bar K^{*0}$, and $\Xi^0_c\to \Sigma^+K^{*-}$ to be $${\cal B}(\Xi^0_c\to \Lambda\bar K^{*0})=(3.3\pm0.3({\rm stat.})\pm0.2({\rm syst.})\pm1.0({\rm ref.}))\times10^{-3},$$ $${\cal B}(\Xi^0_c\to \Sigma^0\bar K^{*0})=(12.4\pm0.5({\rm stat.})\pm0.5({\rm syst.})\pm3.6({\rm ref.}))\times10^{-3},$$ $${\cal B}(\Xi^0_c\to \Sigma^+K^{*-})=(6.1\pm1.0({\rm stat.})\pm0.4({\rm syst.})\pm1.8({\rm ref.}))\times10^{-3},$$ where the uncertainties are statistical, systematic, and from ${\cal B}(\Xi^0_c\to \Xi^-\pi^+)$, respectively. The asymmetry parameters $\alpha(\Xi^0_c\to \Lambda\bar K^{*0})$ and $\alpha(\Xi^0_c\to \Sigma^+K^{*-})$ are $0.15\pm0.22({\rm stat.})\pm0.04({\rm syst.})$ and $-0.52\pm0.30({\rm stat.})\pm0.02({\rm syst.})$, respectively, where the uncertainties are statistical followed by systematic.
Jazyk: English
DOI: 10.3204/pubdb-2021-04430
Přístupová URL adresa: https://explore.openaire.eu/search/publication?articleId=doi_________::0d0881172e9505301e67bfb3dc4a1bbc
Přírůstkové číslo: edsair.doi...........0d0881172e9505301e67bfb3dc4a1bbc
Autor: Jia, S., Tang, S. S., Shen, C. P., Adachi, I., Aihara, H., Al Said, S., Asner, D. M., Aulchenko, V., Aushev, T., Ayad, R., Babu, V., Bahinipati, S., Behera, P., Bennett, J., Bessner, M., Bilka, T., Biswal, J., Bobrov, A., Bonvicini, G., Bozek, A., Bra��ko, M., Browder, T. E., Campajola, M., ��ervenkov, D., Chang, M.-C., Chekelian, V., Chen, A., Cheon, B. G., Chilikin, K., Cho, H. E., Cho, K., Cho, S.-J., Choi, S.-K., Choi, Y., Choudhury, S., Cinabro, D., Cunliffe, S., Das, S., De Nardo, G., Dhamija, R., Di Capua, F., Dole��al, Z., Dong, T. V., Eidelman, S., Epifanov, D., Ferber, T., Flood, K., Fulsom, B. G., Garg, R., Gaur, V., Gabyshev, N., Garmash, A., Giri, A., Goldenzweig, P., Hartbrich, O., Hayasaka, K., Hayashii, H., Hou, W.-S., Hsu, C.-L., Iijima, T., Inami, K., Ishikawa, A., Itoh, R., Iwasaki, M., Iwasaki, Y., Jacobs, W. W., Jin, Y., Joo, K. K., Karyan, G., Kato, Y., Kichimi, H., Kim, C. H., Kim, D. Y., Kim, K.-H., Kim, S. H., Kim, Y.-K., Kinoshita, K., Kody��, P., Konno, T., Korobov, A., Korpar, S., Kovalenko, E., Kri��an, P., Kroeger, R., Krokovny, P., Kuhr, T., Kumara, K., Kuzmin, A., Kwon, Y.-J., Lalwani, K., Lange, J. S., Lee, S. C., Li, J., Li, L. K., Li, Y. B., Li Gioi, L., Libby, J., Lieret, K., Liventsev, D., MacQueen, C., Masuda, M., Matsuda, T., Matvienko, D., McNeil, J. T., Merola, M., Metzner, F., Miyabayashi, K., Miyata, H., Mizuk, R., Mohanty, G. B., Mussa, R., Nakao, M., Natochii, A., Nayak, L., Nayak, M., Niiyama, M., Nisar, N. K., Nishida, S., Nishimura, K., Ogawa, K., Ogawa, S., Ono, H., Onuki, Y., Oskin, P., Pakhlov, P., Pakhlova, G., Pardi, S., Park, H., Park, S.-H., Patra, S., Paul, S., Pestotnik, R., Piilonen, L. E., Podobnik, T., Popov, V., Prencipe, E., Prim, M. T., Rostomyan, A., Rout, N., Russo, G., Sahoo, D., Sandilya, S., Sangal, A., Savinov, V., Schnell, G., Schwanda, C., Seino, Y., Senyo, K., Sevior, M. E., Sharma, C., Shiu, J.-G., Sokolov, A., Solovieva, E., Stari��, M., Stottler, Z. S., Sumihama, M., Sumiyoshi, T., Takizawa, M., Tanida, K., Tenchini, F., Trabelsi, K., Uehara, S., Uglov, T., Unno, Y., Uno, K., Uno, S., Urquijo, P., Usov, Y., Van Tonder, R., Varner, G., Waheed, E., Wang, C. H., Wang, M.-Z., Wang, P., Watanabe, M., Werbycka, O., Won, E., Yabsley, B. D., Yan, W., Yang, S. B., Ye, Hua, Yelton, J., Yin, J. H., Yuan, C. Z., Yusa, Y., Zhang, Z. P., Zhilich, V., Zhukova, V.
Jazyk: angličtina
Rok vydání: 2021
Předmět:
DOI: 10.3204/pubdb-2021-04430
Popis: Using a data sample of 980 fb$^{-1}$ collected with the Belle detector at the KEKB asymmetric-energy $e^+e^-$ collider, we study the processes of $\Xi^0_c\to \Lambda\bar K^{*0}$, $\Xi^0_c\to \Sigma^0\bar K^{*0}$, and $\Xi^0_c\to \Sigma^+K^{*-}$ for the first time. The relative branching ratios to the normalization mode of $\Xi^0_c\to\Xi^-\pi^+$ are measured to be $${\cal B}(\Xi^0_c\to \Lambda\bar K^{*0})/{\cal B}(\Xi^0_c\to \Xi^-\pi^+)=0.18\pm0.02({\rm stat.})\pm0.01({\rm syst.}),$$ $${\cal B}(\Xi^0_c\to \Sigma^0\bar K^{*0})/{\cal B}(\Xi^0_c\to \Xi^-\pi^+)=0.69\pm0.03({\rm stat.})\pm0.03({\rm syst.}),$$ $${\cal B}(\Xi^0_c\to \Sigma^+K^{*-})/{\cal B}(\Xi^0_c\to \Xi^-\pi^+)=0.34\pm0.06({\rm stat.})\pm0.02({\rm syst.}),$$ where the uncertainties are statistical and systematic, respectively. We obtain %measure the branching fractions of $\Xi^0_c\to \Lambda\bar K^{*0}$, $\Xi^0_c\to \Sigma^0\bar K^{*0}$, and $\Xi^0_c\to \Sigma^+K^{*-}$ to be $${\cal B}(\Xi^0_c\to \Lambda\bar K^{*0})=(3.3\pm0.3({\rm stat.})\pm0.2({\rm syst.})\pm1.0({\rm ref.}))\times10^{-3},$$ $${\cal B}(\Xi^0_c\to \Sigma^0\bar K^{*0})=(12.4\pm0.5({\rm stat.})\pm0.5({\rm syst.})\pm3.6({\rm ref.}))\times10^{-3},$$ $${\cal B}(\Xi^0_c\to \Sigma^+K^{*-})=(6.1\pm1.0({\rm stat.})\pm0.4({\rm syst.})\pm1.8({\rm ref.}))\times10^{-3},$$ where the uncertainties are statistical, systematic, and from ${\cal B}(\Xi^0_c\to \Xi^-\pi^+)$, respectively. The asymmetry parameters $\alpha(\Xi^0_c\to \Lambda\bar K^{*0})$ and $\alpha(\Xi^0_c\to \Sigma^+K^{*-})$ are $0.15\pm0.22({\rm stat.})\pm0.04({\rm syst.})$ and $-0.52\pm0.30({\rm stat.})\pm0.02({\rm syst.})$, respectively, where the uncertainties are statistical followed by systematic.
Databáze: OpenAIRE