Canonical Cartan connections on maximally minimal generic submanifolds $\boldsymbol{M^5 \subset \mathbb{C}^4}$

Autor: Samuel Pocchiola, Masoud Sabzevari, Joel Merker
Rok vydání: 2014
Předmět:
Zdroj: Electronic Research Announcements in Mathematical Sciences. 21:153-166
ISSN: 1935-9179
DOI: 10.3934/era.2014.21.153
Popis: On a real analytic $5$-dimensional CR-generic submanifold $M^5 \subset \mathbb{C}^4$ of codimension $3$ hence of CR dimension $1$, which enjoys the generically satisfied nondegeneracy condition \begin{align*} {\bf 5} &= \text{rank}_\mathbb{C} \big( T^{1,0}M+T^{0,1}M + \big[T^{1,0}M,\,T^{0,1}M\big] \,+ \\&\qquad + \big[T^{1,0}M,\,[T^{1,0}M,T^{0,1}M]\big] + \big[T^{0,1}M,\,[T^{1,0}M,T^{0,1}M]\big] \big), \end{align*} a canonical Cartan connection is constructed after reduction to a certain partially explicit $\{ e\}$-structure of the concerned local biholomorphic equivalence problem.
Databáze: OpenAIRE