Autor: |
Damien Lawhorn, Narges Taran, Donovin Lewis, Dan M. Ionel, Peng Han, Murat G. Kesgin |
Rok vydání: |
2020 |
Předmět: |
|
Zdroj: |
2020 IEEE Energy Conversion Congress and Exposition (ECCE). |
DOI: |
10.1109/ecce44975.2020.9236194 |
Popis: |
Coreless axial-flux permanent-magnet (AFPM) machines may be attractive options for high-speed and high-power-density applications due to the elimination of core losses. In order to make full use of the advantages offered by these machines and avoid excessive eddy current losses in windings, advanced technologies for winding conductors need to be employed to suppress the eddy effect, such as the Litz wire and printed circuit board (PCB). In this paper, the best practices for designing Litz wire/PCB windings are discussed and a brief survey of state of the art PCB winding technology is provided. Three coreless AFPM machines are mainly considered. A design optimization procedure based on the multi-objective differential evolution algorithm and 3-dimensional (3D) finite element analysis (FEA) is proposed to take into account the ac winding losses of Litz wires and PCB traces in the machine design stage. Selected designs are being prototyped and will be tested with a customized test fixture. |
Databáze: |
OpenAIRE |
Externí odkaz: |
|