Global Phase Portraits of Kukles Differential Systems with Homogeneous Polynomial Nonlinearities of Degree 6 Having a Center and Their Small Limit Cycles

Autor: Maurício Fronza da Silva, Jaume Llibre
Rok vydání: 2016
Předmět:
Zdroj: International Journal of Bifurcation and Chaos. 26:1650044
ISSN: 1793-6551
0218-1274
DOI: 10.1142/s0218127416500449
Popis: We provide the nine topological global phase portraits in the Poincaré disk of the family of the centers of Kukles polynomial differential systems of the form [Formula: see text] [Formula: see text] where [Formula: see text] and [Formula: see text] are real parameters satisfying [Formula: see text] Using averaging theory up to sixth order we determine the number of limit cycles which bifurcate from the origin when we perturb this system first inside the class of all homogeneous polynomial differential systems of degree [Formula: see text] and second inside the class of all polynomial differential systems of degree [Formula: see text]
Databáze: OpenAIRE