Popis: |
Numerous applications of topical interest call for knowledge discovery and classification from information that may be inaccurate and/or incomplete. For example, in an airport threat classification scenario, data from heterogeneous sensors are used to extract features for classifying potential threats. This requires a training set that utilizes non-traditional information sources (e.g., domain experts) to assign a threat level to each training set instance. Sensor reliability, accuracy, noise, etc., all contribute to feature level ambiguities; conflicting opinions of experts generate class label ambiguities that may however indicate important clues. To accommodate these, a belief theoretic approach is proposed. It utilizes a data structure that facilitates belief/plausibility queries regarding "ambiguous" itemsets. An efficient apriori -like algorithm is then developed to extract frequent such itemsets and to generate corresponding association rules. These are then used to classify an incoming "ambiguous" data instance into a class label (which may be "hard" or "soft"). To test its performance, the proposed algorithm is compared with C4.5 for several databases from the UCI repository and a threat assessment application scenario.© (2005) COPYRIGHT SPIE--The International Society for Optical Engineering. Downloading of the abstract is permitted for personal use only. |