Transfer of a species cytoplasm specific (scs) gene from Triticum timopheevii to T. turgidum
Autor: | S. S. Maan |
---|---|
Rok vydání: | 1992 |
Předmět: | |
Zdroj: | Genome. 35:238-243 |
ISSN: | 1480-3321 0831-2796 |
DOI: | 10.1139/g92-036 |
Popis: | Initial attempts to substitute euploid nuclei of Triticum turgidum L. or T. aestivum L. into Aegilops longissima S. &L. cytoplasm failed because an alien chromosome remained fixed in the Triticum nucleus. The alien chromosome had gene(s) conditioning sporophytic sterility (also known as the gameticidal or Cuckoo effect). Subsequently, an exceptional 29-chromosome, male-sterile plant with spontaneously improved female fertility was used as a source of Ae. longissima cytoplasm, and a fully fertile alloplasmic common wheat 'Selkirk' line was developed. However, alloplasmic 'Selkirk' crossed with durum wheat as a recurrent male parent did not produce euploid plants. Instead, chromosome 1D or telocentric 1DL of 'Selkirk' was retained and male-sterile plants with 29 chromosomes were obtained. They set two seed types: a few that were plump and viable (PVi) and a large number that were shrivelled and inviable (SIv). The 1DL was deleted by crossing these plants to T. timopheevii, backcrossing the F1's to T. timopheevii, and repeatedly backcrossing the timopheevii-like plants to durum as the recurrent male parent. The resulting euploid durum plants with Ae. longissima cytoplasm were male sterile and set a 1:1 ratio of PVi and SIv seeds. Thus, a species cytoplasm specific (scs) gene of T. timopheevii was transferred to durum and caused male sterility and abortion of embryos lacking this gene. In conclusion, (i) the scs gene was expressed as a dominant sterility gene, restored seed viability, and partial compatibility between the durum nucleus and Ae. longissima cytoplasm and (ii) a scs gene on 1DL also caused dominant sterility in durum but not in alloplasmic common wheat. Hence, alien scs homoeoallele(s) conditioned sterility and seed abortion in alloplasmic durum but not in T. aestivum and T. timopheevii.Key words: interspecific nucleocytoplasmic genetics, sporophytically controlled sterility, B-genome donor, scs gene. |
Databáze: | OpenAIRE |
Externí odkaz: |