Evaluation of Different Artificial Intelligent Models to Predict Reservoir Formation Water Density

Autor: Alireza Bahadori, Saeid Naseri, Tomoaki Kashiwao, Afshin Tatar, Moonyong Lee, Meysam Bahadori, Jake Rozyn
Rok vydání: 2015
Předmět:
Zdroj: Petroleum Science and Technology. 33:1749-1756
ISSN: 1532-2459
1091-6466
Popis: Nearly all hydrocarbon reservoirs are bounded by water-saturated rocks, namely aquifers. In addition to natural water drive, there is an artificial water drive mechanism in which water is injected into formation to intensify the reservoir pressure. This method, employed to induce the hydrocarbon production, is called water flooding. Several laboratory researches have shown that oil recovery can be heightened by making some alterations to injected brine salinity through water flooding. Accordingly, acquiring exact information about the PVT characteristics of brine is necessary. Density is a property of great importance as it is employed in various physical, chemical, geothermal, and geochemical aspects. The authors aimed to develop a dependable intelligent method to accurately predict the brine density at elevated temperatures and pressures. MLP and GA-RBF models were utilized in this study. The results showed that the proposed model is capable of accurately predicting the brine density at elevated pressur...
Databáze: OpenAIRE