Embeddings of o-groups of finite archimedean rank

Autor: Ramiro H. Lafuente-Rodriguez
Rok vydání: 2021
Předmět:
Zdroj: Algebra universalis. 82
ISSN: 1420-8911
0002-5240
Popis: We prove that for every $$n>2$$ there exists an o-group G of finite Archimedean rank n such that G cannot be embedded in a divisible o-group of Archimedean rank n, and also prove that G can be embedded in an o-group of finite Archimedean rank greater than n.
Databáze: OpenAIRE