A Family of Discontinuous Galerkin Finite Elements for the Reissner–Mindlin Plate
Autor: | Douglas N. Arnold, Franco Brezzi, L. Donatella Marini |
---|---|
Rok vydání: | 2005 |
Předmět: |
Numerical Analysis
Degree (graph theory) Applied Mathematics Mathematical analysis General Engineering Geometry Finite element method Displacement (vector) Mathematics::Numerical Analysis Theoretical Computer Science Computational Mathematics Transverse plane Computational Theory and Mathematics Discontinuous Galerkin method Element (category theory) Software Mathematics |
Zdroj: | Journal of Scientific Computing. :25-45 |
ISSN: | 1573-7691 0885-7474 |
Popis: | We develop a family of locking-free elements for the Reissner-Mindlin plate using Discontinuous Galerkin (DG) techniques, one for each odd degree, and prove optimal error estimates. A second family uses conforming elements for the rotations and nonconforming elements for the transverse displacement, generalizing the element of Arnold and Falk to higher degree. |
Databáze: | OpenAIRE |
Externí odkaz: |