A perturbative SU (3) Casson invariant
Autor: | Edward Y. Miller, Ronnie Lee, Sylvain E. Cappell |
---|---|
Rok vydání: | 2002 |
Předmět: | |
Zdroj: | Commentarii Mathematici Helvetici. 77:491-523 |
ISSN: | 1420-8946 0010-2571 |
DOI: | 10.1007/s00014-002-8349-8 |
Popis: | A perturbative SU(3) Casson invariant \( \Lambda_{SU(3)}(X) \) for integral homology 3-sphere is defined. Besides being fully perturbative, it has the nice properties: (1) \( 4\cdot \Lambda_{SU(3)} \) is an integer. (2) It is preserved under orientation change. (3) A connect sum formula. Explicit calculations of the invariant for 1/k surgery of (2, q) torus knot are presented and compared with Boden-Herald‚s different SU(3) generalization of Casson‚s invariant. For those cases computed, the invariant defined here is a quadratic polynomial in k for k > 0 and a different quadratic polynomial for k < 0. |
Databáze: | OpenAIRE |
Externí odkaz: |