System Identification with Orthogonal Basis Functions and Neural Networks

Autor: M.H.G. Verhaegen, A.J. Krijgsman, G. Schram
Rok vydání: 1996
Předmět:
Zdroj: IFAC Proceedings Volumes. 29:4150-4155
ISSN: 1474-6670
DOI: 10.1016/s1474-6670(17)58331-7
Popis: For the control of a process, usually the relation between past input-output data of the process and future outputs must be identified. For the identification of nonlinear systems, neural networks can be used [3]. In this context, neural networks are nonlinear black-box models, to be used with convential parameter estimation methods. Two important models are: NNFIR-models: Neural Network Finite Impulse Response models, which use only past process inputs u(k − n) as inputs for the network; NNARX-models: Neural Network Auto Regressive with eXogeneous input models, which use past process inputs u(k − n) and past process outputs y(k − n) as inputs for the network.
Databáze: OpenAIRE