Complex curves of genus three, Kummer surfaces and Quillen metrics
Autor: | Ken-Ichi Yoshikawa, Shu Kawaguchi |
---|---|
Rok vydání: | 2005 |
Předmět: |
Discrete mathematics
Pure mathematics Mathematics::Number Theory General Mathematics Image (category theory) Algebraic geometry Kummer surface Mathematics::Algebraic Geometry Number theory Mathematics::K-Theory and Homology Genus (mathematics) Quartic function Metric (mathematics) Embedding Mathematics |
Zdroj: | manuscripta mathematica. 118:201-225 |
ISSN: | 1432-1785 0025-2611 |
DOI: | 10.1007/s00229-005-0585-y |
Popis: | Let C be a smooth, complex, projective curve of genus 3. By choosing an unramified double covering of C, the Abel-Prym map yields an embedding of C into a Kummer surface K when C is non-hyperelliptic. We compute the Quillen metric on Open image in new window the determinant of the cohomologies of Open image in new window with respect to the metric on C induced from the flat Kahler metric on K. For the computation of the Quillen metric, we show the exact self-duality of the Heisenberg-invariant Kummer's quartic surfaces. |
Databáze: | OpenAIRE |
Externí odkaz: |