The Parallel Approach to the Conjugate Gradient Learning Algorithm for the Feedforward Neural Networks

Autor: Jacek Smoląg, Jarosław Bilski, Alexander I. Galushkin
Rok vydání: 2014
Předmět:
Zdroj: Artificial Intelligence and Soft Computing ISBN: 9783319071725
ICAISC (1)
DOI: 10.1007/978-3-319-07173-2_2
Popis: This paper presents the parallel architecture of the conjugate gradient learning algorithm for the feedforward neural networks. The proposed solution is based on the high parallel structures to speed up learning performance. Detailed parallel neural network structures are explicitly shown.
Databáze: OpenAIRE