Controllable optical emission wavelength in all-inorganic halide perovskite alloy microplates grown by two-step chemical vapor deposition
Autor: | Pengfei Guo, Johnny C. Ho, Wayesh Qarony, Yuen Hong Tsang, Mohammad Kamal Hossain, Kin Man Yu, Chao Ping Liu, Sai W. Tsang |
---|---|
Rok vydání: | 2020 |
Předmět: |
Materials science
Active laser medium Alloy Analytical chemistry Halide 02 engineering and technology Chemical vapor deposition engineering.material 010402 general chemistry 021001 nanoscience & nanotechnology Condensed Matter Physics 01 natural sciences Atomic and Molecular Physics and Optics 0104 chemical sciences engineering General Materials Science Emission spectrum Electrical and Electronic Engineering 0210 nano-technology Ternary operation Visible spectrum Perovskite (structure) |
Zdroj: | Nano Research. 13:2939-2949 |
ISSN: | 1998-0000 1998-0124 |
DOI: | 10.1007/s12274-020-2951-1 |
Popis: | All-inorganic halide perovskites (IHP), CsPbX3 (X = Cl, Br, I) exhibiting efficient optical emissions within the spectral range of 410 to 730 nm are potential candidates for many optoelectronic devices. Anion alloying of these IHPs is expected to achieve tunable emission wavelength covering the entire visible spectrum. Here, we developed a two-step chemical vapor deposition (CVD) process for growing quaternary IHP CsPbX3 (X = Cl/Br and Br/I) alloys. By exploiting the fast diffusion of halide anions in IHPs, the alloy composition can be precisely controlled by the growth time of the respective layers once the growth of the individual ternary IHP is optimized. Hence complexities in the multi-parameter optimization in the conventional CVD growth of quaternary alloys can be mitigated. Using this process, we synthesized single crystalline, homogeneous and thermally stable CsPbCl3(1−X)Br3x and CsPbBr3(1−X)I3x perovskites alloy microplates and demonstrated continuously tunable emission covering the spectrum from 428 to 715 nm by varying the halide compositions in the alloys. These alloy microplates also exhibit room temperature amplified spontaneous emissions (ASE) along with strong photonic discharges from the microplate’s edges and hence are potentially useful as a gain medium as well as optical cavities for emissions with wavelengths covering the visible spectrum. |
Databáze: | OpenAIRE |
Externí odkaz: |