Rare-earth orthovanadate nanoparticles trigger Ca2+-dependent eryptosis
Autor: | Svetlana Yefimova, Anatolii Onishchenko, Vladimir Klochkov, Valeriy Myasoedov, Yurii Kot, Liliya Tryfonyuk, Oleksandr Knigavko, Pavel Maksimchuk, Umut Kökbaş, Yuliia Kalashnyk-Vakulenko, Andrii Arkatov, Vladyslav Khanzhyn, Volodymyr Prokopyuk, Iryna Vyshnytska, Anton Tkachenko |
---|---|
Rok vydání: | 2023 |
Předmět: | |
Zdroj: | Nanotechnology. 34:205101 |
ISSN: | 1361-6528 0957-4484 |
DOI: | 10.1088/1361-6528/acbb7f |
Popis: | Introduction. Rare-earth orthovanadate nanoparticles (ReVO4:Eu3+, Re = Gd, Y or La) are promising agents for photodynamic therapy of cancer due to their modifiable redox properties. However, their toxicity limits their application. Objective. The aim of this research was to elucidate pro-eryptotic effects of GdVO4:Eu3+ and LaVO4:Eu3+ nanoparticles with identification of underlying mechanisms of eryptosis induction and to determine their pharmacological potential in eryptosis-related diseases. Methods. Blood samples (n = 9) were incubated for 24 h with 0–10–20–40–80 mg l−1 GdVO4:Eu3+ or LaVO4:Eu3+ nanoparticles, washed and used to prepare erythrocyte suspensions to analyze the cell membrane scrambling (annexin-V-FITC staining), cell shrinkage (forward scatter signaling), reactive oxygen species (ROS) generation through 2′,7′-dichlorodihydrofluorescein diacetate (H2DCFDA) staining and intracellular Ca2+ levels via FLUO4 AM staining by flow cytometry. Internalization of europium-enabled luminescent GdVO4:Eu3+ and LaVO4:Eu3+ nanoparticles was assessed by confocal laser scanning microscopy. Results. Both nanoparticles triggered eryptosis at concentrations of 80 mg l−1. ROS-mediated mechanisms were not involved in rare-earth orthovanadate nanoparticles-induced eryptosis. Elevated cytosolic Ca2+ concentrations were revealed even at subtoxic concentrations of nanoparticles. LaVO4:Eu3+ nanoparticles increased intracellular calcium levels in a more pronounced way compared with GdVO4:Eu3+ nanoparticles. Our data disclose that the small-sized (15 nm) GdVO4:Eu3+ nanoparticles were internalized after a 24 h incubation, while the large-sized (∼30 nm) LaVO4:Eu3+ nanoparticles were localized preferentially around erythrocytes. Conclusions. Both internalized GdVO4:Eu3+ and non-internalized LaVO4:Eu3+ nanoparticles (80 mg l−1) promote eryptosis of erythrocytes after a 24 h exposure in vitro via Ca2+ signaling without involvement of oxidative stress. Eryptosis is a promising model for assessing nanotoxicity. |
Databáze: | OpenAIRE |
Externí odkaz: |