The Upper Central Series of the Unit Group of an Integral Group Ring
Autor: | M. M. Parmenter, Yuanlin Li |
---|---|
Rok vydání: | 2005 |
Předmět: | |
Zdroj: | Communications in Algebra. 33:1409-1415 |
ISSN: | 1532-4125 0092-7872 |
DOI: | 10.1081/agb-200061026 |
Popis: | Let Z n (𝒰) denote the n'th term of the upper central series of the unit group 𝒰 of ℤG and [Ztilde](𝒰) = Z n (𝒰). It is shown that if the set of torsion elements of G forms a subgroup T and [Ztilde](𝒰)⊈C 𝒰(T), then T is either an Abelian 2-group or a Q-group. Moreover, [Ztilde](𝒰) ⊆ G ⋅ C 𝒰(T) whenever G is an FC group. #Communicated by M. Ferrero. |
Databáze: | OpenAIRE |
Externí odkaz: |