The Upper Central Series of the Unit Group of an Integral Group Ring

Autor: M. M. Parmenter, Yuanlin Li
Rok vydání: 2005
Předmět:
Zdroj: Communications in Algebra. 33:1409-1415
ISSN: 1532-4125
0092-7872
DOI: 10.1081/agb-200061026
Popis: Let Z n (𝒰) denote the n'th term of the upper central series of the unit group 𝒰 of ℤG and [Ztilde](𝒰) = Z n (𝒰). It is shown that if the set of torsion elements of G forms a subgroup T and [Ztilde](𝒰)⊈C 𝒰(T), then T is either an Abelian 2-group or a Q-group. Moreover, [Ztilde](𝒰) ⊆ G ⋅ C 𝒰(T) whenever G is an FC group. #Communicated by M. Ferrero.
Databáze: OpenAIRE