Decay and scattering in energy space for the solution of weakly coupled Schrödinger–Choquard and Hartree–Fock equations
Autor: | Mirko Tarulli, George Venkov |
---|---|
Rok vydání: | 2020 |
Předmět: |
Scattering
010102 general mathematics Mathematics::Analysis of PDEs Hartree–Fock method Space (mathematics) Lebesgue integration 01 natural sciences Schrödinger equation 010101 applied mathematics symbols.namesake Mathematics (miscellaneous) Dimension (vector space) symbols 0101 mathematics Nonlinear Sciences::Pattern Formation and Solitons Schrödinger's cat Energy (signal processing) Mathematics Mathematical physics |
Zdroj: | Journal of Evolution Equations. 21:1149-1178 |
ISSN: | 1424-3202 1424-3199 |
DOI: | 10.1007/s00028-020-00621-x |
Popis: | We prove decay with respect to some Lebesgue norms for a class of Schrodinger equations with non-local nonlinearities by showing new Morawetz inequalities and estimates. As a byproduct, we obtain large-data scattering in the energy space for the solutions to the systems of N defocusing Schrodinger–Choquard equations with mass-energy intercritical nonlinearities in any space dimension and of defocusing Hartree–Fock equations, for any dimension $$d\ge 3$$ . |
Databáze: | OpenAIRE |
Externí odkaz: |