Three-dimensional overturned traveling water waves
Autor: | Jonah A. Reeger, Benjamin F. Akers |
---|---|
Rok vydání: | 2017 |
Předmět: |
Physics
Scale (ratio) Applied Mathematics General Physics and Astronomy Mechanics 01 natural sciences 010305 fluids & plasmas Physics::Fluid Dynamics 010101 applied mathematics Computational Mathematics symbols.namesake Fourier transform Numerical continuation Amplitude Modeling and Simulation 0103 physical sciences Vortex sheet symbols Gravity wave 0101 mathematics Longitudinal wave Ansatz |
Zdroj: | Wave Motion. 68:210-217 |
ISSN: | 0165-2125 |
DOI: | 10.1016/j.wavemoti.2016.10.001 |
Popis: | Traveling gravity-capillary water waves on the interface of a three-dimensional fluid of infinite depth are computed. The vortex sheet formulation with the small scale approximation is used as the mathematical model for the fluid motion. The fluid interface is parameterized isothermally. The traveling wave ansatz for parameterized surfaces is described. Waves are computed using Fourier collocation and quasi-Newton iteration; large amplitude overturned traveling waves are computed via a dimension-breaking based numerical continuation method. |
Databáze: | OpenAIRE |
Externí odkaz: |