Interpreting the compositional truth predicate in models of arithmetic
Autor: | Cezary Cieśliński |
---|---|
Rok vydání: | 2021 |
Předmět: |
Class (set theory)
Interpretation (logic) Logic 010102 general mathematics 06 humanities and the arts 0603 philosophy ethics and religion 01 natural sciences Formal proof Philosophy Nothing 060302 philosophy Countable set Truth predicate 0101 mathematics Algebra over a field Arithmetic Saturated model Mathematics |
Zdroj: | Archive for Mathematical Logic. 60:749-770 |
ISSN: | 1432-0665 0933-5846 |
DOI: | 10.1007/s00153-020-00758-z |
Popis: | We present a construction of a truth class (an interpretation of a compositional truth predicate) in an arbitrary countable recursively saturated model of first-order arithmetic. The construction is fully classical in that it employs nothing more than the classical techniques of formal proof theory. |
Databáze: | OpenAIRE |
Externí odkaz: |