Product of lattice-valued measures on topological spaces
Autor: | Surjit Singh Khurana |
---|---|
Rok vydání: | 2008 |
Předmět: | |
Zdroj: | Mathematica Slovaca. 58:309-314 |
ISSN: | 1337-2211 0139-9918 |
DOI: | 10.2478/s12175-008-0076-1 |
Popis: | X1 and X 2 are completely regular Hausdorff spaces, E 1, E 2 and F are Dedekind complete Banach lattices, 〈·,·〉: E 1 × E 2 → F is a bilinear mapping, and μ 1 and μ 2 are, respectively, E 1 and E 2 valued positive, countably additive Baire or Borel measures (countable additivity relative to order convergence) on X 1 and X 2. Under certain conditions the existence and uniqueness of the F-valued, positive, product measure is proved. |
Databáze: | OpenAIRE |
Externí odkaz: |