Bayesian Inference from Symplectic Geometric Viewpoint
Autor: | Hinako Matsuyama, Tomonori Noda |
---|---|
Rok vydání: | 2019 |
Předmět: | |
Zdroj: | Advances in Pure Mathematics. :827-831 |
ISSN: | 2160-0384 2160-0368 |
DOI: | 10.4236/apm.2019.910039 |
Popis: | The purpose of this article is to formulate Bayesian updating from dynamical viewpoint. We prove that Bayesian updating for population mean vectors of multivariate normal distributions can be expressed as an affine symplectic transformation on a phase space with the canonical symplectic structure. |
Databáze: | OpenAIRE |
Externí odkaz: |