Bayesian Inference from Symplectic Geometric Viewpoint

Autor: Hinako Matsuyama, Tomonori Noda
Rok vydání: 2019
Předmět:
Zdroj: Advances in Pure Mathematics. :827-831
ISSN: 2160-0384
2160-0368
DOI: 10.4236/apm.2019.910039
Popis: The purpose of this article is to formulate Bayesian updating from dynamical viewpoint. We prove that Bayesian updating for population mean vectors of multivariate normal distributions can be expressed as an affine symplectic transformation on a phase space with the canonical symplectic structure.
Databáze: OpenAIRE