Locally nilpotent derivations and Nagata-type utomorphisms of a polynomial algebra

Autor: Yu. V. Bodnarchuk, P. H. Prokof’ev
Rok vydání: 2009
Předmět:
Zdroj: Ukrainian Mathematical Journal. 61:1199-1214
ISSN: 1573-9376
0041-5995
DOI: 10.1007/s11253-010-0271-4
Popis: We study locally nilpotent derivations belonging to a Lie algebra sa n of a special affine Cremona group in connection with the root decompositions of sa n relative to the maximum standard torus. It is proved that all root locally nilpotent derivations are elementary. As a continuation of this research, we describe two- and three-root derivations. By using the results obtained by Shestakov and Umirbaev, it is shown that the exponents of almost all obtained three-root derivations are wild automorphisms of a polynomial algebra in three variables.
Databáze: OpenAIRE