Nuclear magnetic resonance to study the interactions acting in the enantiomeric separation of homocysteine by capillary electrophoresis with a dual system of γ‐cyclodextrin and the chiral ionic liquid EtCholNTf2

Autor: María Luisa Marina, María Castro-Puyana, Antonio Salgado, Maider Greño
Rok vydání: 2019
Předmět:
Zdroj: ELECTROPHORESIS.
ISSN: 1522-2683
0173-0835
Popis: The enantiomeric separation of 9-fluorenylmethoxycarbonyl chloride (FMOC)-homocysteine (Hcy) by CE was investigated using γ-CD and the chiral ionic liquid (R)-(1-hydroxybutan-2-yl)(trimethyl)azanium-bis(trifluoromethanesulfon)imidate (also called (R)-N,N,N-trimethyl-2-aminobutanol-bis(trifluoromethane-sulfon)imidate) (EtCholNTf2 ) as chiral selectors. Using 2 mM γ-CD and 5 mM EtCholNTf2 in 50 mM borate buffer (pH 9), FMOC-Hcy enantiomers were separated with a resolution value of 3.8. A reversal in the enantiomer migration order in comparison with the single use of γ-CD in the separation buffer was obtained. Then, NMR experiments were carried out to elucidate the interactions taking place in the enantiomeric separation of FMOC-Hcy. NMR analyses highlighted the formation of an inclusion complex since the hydrophobic group of FMOC-Hcy was inserted into the γ-CD cavity. Moreover, interactions between EtCholNTf2 and γ-CD were also observed, suggesting that the chiral ionic liquid would also enter the cavity of the γ-CD.
Databáze: OpenAIRE