Increased solubility of plant core pulp cellulose for regenerated hydrogels through electron beam irradiation
Autor: | Amanda V. Ellis, Farah Nadia Mohammad Padzil, Sinyee Gan, Nor Hasimah Mohamed, Siti Fatahiyah Mohamad, Yung Bum Seo, Sarani Zakaria |
---|---|
Rok vydání: | 2018 |
Předmět: |
0106 biological sciences
Polymers and Plastics Pulp (paper) technology industry and agriculture Regenerated cellulose macromolecular substances 02 engineering and technology engineering.material 021001 nanoscience & nanotechnology 01 natural sciences chemistry.chemical_compound chemistry Sodium hydroxide 010608 biotechnology Self-healing hydrogels engineering Lignin Hemicellulose Cellulose Solubility 0210 nano-technology Nuclear chemistry |
Zdroj: | Cellulose. 25:4993-5006 |
ISSN: | 1572-882X 0969-0239 |
DOI: | 10.1007/s10570-018-1933-x |
Popis: | High cellulose solubility is an essential to successful production of regenerated cellulose, from which hydrogels can be produced. Additionally, some pretreatment usually facilitates cellulose solubility. Bleached cellulose pulp from kenaf core (BK), consisting of lignin (0.3%), hemicellulose (5.2%) and ash (0%), was treated with an electron beam irradiation (EBI) at 10, 30, 50 and 70 kGy. The BK and irradiated bleached cellulose pulp (IK) were then dissolved in either sodium hydroxide/urea or lithium hydroxide/urea solvents which subsequently crosslinked with epichlorohydrin (ECH) solution to stabilize the formation of regenerated cellulose hydrogels. The amount of α-cellulose component in IK samples decreased as much as 38% and caused the viscosity average molecular weight (Mv) and degree of polymerization of IK samples to be reduced significantly by 84 and 87%, respectively. This resulted in an increase in cellulose solubility (up to 30%) for the IK samples in both solvent systems. However, this treatment resulted in a reduction in the overall cellulose fibre strength. X-ray diffraction of the hydrogels showed a transformation from cellulose I to amorphous cellulose. These hydrogels exhibited a higher degree of swelling, transparency and porosity compared to hydrogels prepared from non-irradiated pulp. |
Databáze: | OpenAIRE |
Externí odkaz: |