Symplectic analysis of dynamical systems with a small parameter. A new criterion for stabilization of homoclinic separatrices and its application
Autor: | V. G. Samoilenko, A. K. Prikarpats'kyy, Yu. O. Mitropol'skii, I. O. Antonishin |
---|---|
Rok vydání: | 1992 |
Předmět: | |
Zdroj: | Ukrainian Mathematical Journal. 44:41-58 |
ISSN: | 1573-9376 0041-5995 |
DOI: | 10.1007/bf01062626 |
Popis: | Adiabatic invariants of nonlinear dynamical autonomous and nonautonomous type systems on symplectic manifolds, particularly existence criteria for these systems and methods of constructing them explicitly, are studied. A thorough analysis of the phenomenon of the splitting of a homoclinic separatrix with a singular hyperbolic-type point is conducted, and a new, exact method of constructing an analogue of the Mel'nikov μ-function that yields necessary and sufficient transversality conditions which may be automatically generalized to the case of a dynamical system in ℝ n ,n e ℤ+, is suggested. |
Databáze: | OpenAIRE |
Externí odkaz: |