Dynamics of parabolic equations via the finite element method I. Continuity of the set of equilibria
Autor: | German Lozada-Cruz, Rodiak N. Figueroa-López |
---|---|
Rok vydání: | 2016 |
Předmět: |
Discretization
Applied Mathematics 010102 general mathematics Mathematical analysis Mathematics::Analysis of PDEs Finite volume method for one-dimensional steady state diffusion Mixed finite element method 01 natural sciences Parabolic partial differential equation Finite element method 010101 applied mathematics symbols.namesake Pressure-correction method Dirichlet boundary condition symbols 0101 mathematics Analysis Mathematics Extended finite element method |
Zdroj: | Journal of Differential Equations. 261:5235-5259 |
ISSN: | 0022-0396 |
DOI: | 10.1016/j.jde.2016.07.023 |
Popis: | In this paper we study the dynamics of parabolic semilinear differential equations with homogeneous Dirichlet boundary conditions via the discretization of finite element method. We provide an appropriate functional setting to treat this problem and, as a first step, we show the continuity of the set of equilibria and of its linear unstable manifolds. |
Databáze: | OpenAIRE |
Externí odkaz: |