Autor: |
Bernard F. Buxton, S. J. Barrett, William B. Langdon |
Rok vydání: |
2002 |
Předmět: |
|
Zdroj: |
Soft Computing and Industry ISBN: 9781447111016 |
DOI: |
10.1007/978-1-4471-0123-9_51 |
Popis: |
We have previously shown [Langdon and Buxton, 2001b] on a range of benchmarks genetic programming (GP) can automatically fuse given classifiers of diverse types to produce a combined classifier whose Receiver Operating Characteristics (ROC) are better than [Scott et al., 1998]’s “Maximum Realisable Receiver Operating Characteristics” (MRROC). i.e. better than their convex hull. Here our technique is used in a blind trial where artificial neural networks are trained by Clementine on P450 pharmaceutical data. Using just the networks, GP automatically evolves a composite classifier. |
Databáze: |
OpenAIRE |
Externí odkaz: |
|