MLN2238, a Novel and Potent Proteasome Inhibitor, Induces Caspase-Dependent Cell Death, Cell-Cycle Arrest, and Potentiates the Anti-Tumor Activity of Chemotherapy Agents In Rituximab-Chemotherapy Sensitive or Resistant B-Cell Lymphoma Cell Lines
Autor: | Juan Gu, George Deeb, Francisco J. Hernandez-Ilizaliturri, John F. Gibbs, Cory Mavis, Myron S. Czuczman, Patil Ritesh |
---|---|
Rok vydání: | 2010 |
Předmět: | |
Zdroj: | Blood. 116:3939-3939 |
ISSN: | 1528-0020 0006-4971 |
Popis: | Abstract 3939 The use of proteasome inhibitors such as bortezomib (BTZ) has generated much excitement as a potential therapeutic approach capable of effectively treating resistant/refractory lymphoid neoplasm. Clinical outcomes in multiple myeloma and relapsed mantle cell lymphoma demonstrate that these novel agents can overcome resistance demonstrated by a lack of antitumor activity to traditional salvage chemotherapeutic agents. Our group of investigators have demonstrated that proteasome inhibition using BTZ can increase pro-apoptotic Bcl-2 family member expression and restore chemotherapy sensitivity in rituximab-chemotherapy resistant cell lines (RRCL). To further develop therapeutic strategies targeting the proteasome system, we studied the anti-tumor activity and mechanisms-of-action of MLN2238, a novel irreversible proteasome inhibitor, in pre-clinical lymphoma models. Experiments were conducted in rituximab-chemotherapy sensitive cell lines (RSCL), RRCL, and in tumor cells derived from patients with de novo or relapsed/refractory B-cell lymphoma. Cells were exposed in vitro and/or ex vivo to escalating doses of MLN2238 or BTZ (0.1-10nM) +/− caspase inhibitors (zVAD-fmk or Q-VD-OPh) for 24, 48 and 72h. Differences in mitochondrial potential and cell proliferation were determined by alamar blue reduction using a kinetic assay; changes in ATP content (apoptosis) were determined using the Cell Titer Glow assay. Effects on cell cycle were analyzed by the FASCan DNA method. In addition, lymphoma cells were exposed to MLN2238 or BTZ +/− doxorubicin, gemcitabine or paclitaxel and cell viability was evaluated as described above. In vitro, MLN2238 exhibited more potent concentration- and time-dependent cytotoxicity and inhibition of cell proliferation in RSCL, RRCL, as well as primary lymphoma cells than BTZ. In vitro exposure of RSCL and RRCL to MLN2238 potentiated the cytotoxic effects of gemcitabine, doxorubicin, and paclitaxel and overcame the acquired resistance to chemotherapy drugs in RRCL in a dose-dependent manner. Co-incubation of RSCL with bortezomib, or MLN2232 and either pan-caspase inhibitor led to a significant decrease in BTZ- or MLN2232-induced cell death. In contrast, neither zVAD-fmk nor Q-VD-OPh was capable of blocking BTZ- or MLN2232-induced cell death of RRCL. Our data suggest that BTZ and MLN2238 are also capable of inducing caspase-independent cell death in RRCL. To this regard, we found differences that RRCL are more likely to be in S phase in resting conditions when compared to RSCL. In vitro exposure of RRCL cells to MLN2232 (and to a much lesser degree BTZ) reduced RRCL S-phase and induced arrest at G2/M phase. Collectively, these data suggest that MLN2238 is a potent proteasome inhibitor active in rituximab-chemotherapy sensitive or resistant cell models and potentiates the anti-tumor activity of chemotherapy agents. MLN2232 appears to posses several mechanisms-of-action (induction of apoptosis and/or cell cycle arrest) and has the potential of becoming a novel and potent target-specific therapeutic agent in the future treatment of therapy-resistant B-cell lymphoma. (Research, in part, supported by a NIH grant R01 CA136907-01A1 awarded to Roswell Park Cancer Institute). Disclosures: No relevant conflicts of interest to declare. |
Databáze: | OpenAIRE |
Externí odkaz: |