Strong rates of convergence for a space-time discretization of the backward stochastic heat equation, and of a linear-quadratic control problem for the stochastic heat equation

Autor: Yanqing Wang, Andreas Prohl
Rok vydání: 2021
Předmět:
Zdroj: ESAIM: Control, Optimisation and Calculus of Variations. 27:54
ISSN: 1262-3377
1292-8119
DOI: 10.1051/cocv/2021052
Popis: We verify strong rates of convergence for a time-implicit, finite-element based space-time discretization of the backward stochastic heat equation, and the forward-backward stochastic heat equation from stochastic optimal control. The fully discrete version of the forward-backward stochastic heat equation is then used within a gradient descent algorithm to approximately solve the linear-quadratic control problem for the stochastic heat equation driven by additive noise. This work is thus giving a theoretical foundation for the computational findings in Dunst and Prohl, SIAM J. Sci. Comput. 38 (2016) A2725–A2755.
Databáze: OpenAIRE