Autor: Alexander A. Soloviev, Natalia G. Peterova, G. Csepura
Rok vydání: 2001
Předmět:
Zdroj: Solar Physics. 201:137-152
ISSN: 0038-0938
DOI: 10.1023/a:1010320428861
Popis: We present a very rare case of unexpected depression of radio emission above a sunspot using solar observations from RATAN-600. The sunspot had a very high proper motion on the solar surface. The depression lasted for 5 days without significant changes in area or magnitude of magnetic field of the associated sunspot. The observations show that the depression cannot be explained by the absorption of the emission during its propagation through the overlying magnetosphere of the AR or through the cold and opaque matter of a prominence. The theoretical interpretation of the phenomenon is based on the hypothesis that the motion of the sunspot on the photosphere leads to the significant expanding of the magnetic loop originated at this sunspot. The extension of the twisted magnetic rope results in the loss of equilibrium of the system: the closed magnetic structure (the twisted magnetic loop) seems destined to transform into an open one. The only mechanism of plasma heating which would be `switched off' in such a non-equilibrium configuration is that based on the quasi-static topological relaxation of a force-free magnetic field towards a configuration of minimum energy. Relaxation of magnetic fields does not occur in a non-equilibrium state. As a consequence, the energy release in the twisted magnetic rope and the temperature of the plasma of the local radio source have to fall down abruptly. Thus, the discussed phenomenon argues in favor of the relaxation model of plasma heating.
Databáze: OpenAIRE