TEMPORAL GENERALIZATION WITH DOMAIN GENERALIZATION GRAPHS
Autor: | Dee Jay Randall, Howard J. Hamilton, Robert J. Hilderman |
---|---|
Rok vydání: | 1999 |
Předmět: | |
Zdroj: | International Journal of Pattern Recognition and Artificial Intelligence. 13:195-217 |
ISSN: | 1793-6381 0218-0014 |
DOI: | 10.1142/s0218001499000124 |
Popis: | This paper addresses the problem of using domain generalization graphs to generalize temporal data extracted from relational databases. A domain generalization graph associated with an attribute defines a partial order which represents a set of generalization relations for the attribute. We propose formal specifications for domain generalization graphs associated with calendar (date and time) attributes. These graphs are reusable (i.e. can be used to generalize any calendar attributes), adaptable (i.e. can be extended or restricted as appropriate for particular applications), and transportable (i.e. can be used with any database containing a calendar attribute). |
Databáze: | OpenAIRE |
Externí odkaz: |