TEMPORAL GENERALIZATION WITH DOMAIN GENERALIZATION GRAPHS

Autor: Dee Jay Randall, Howard J. Hamilton, Robert J. Hilderman
Rok vydání: 1999
Předmět:
Zdroj: International Journal of Pattern Recognition and Artificial Intelligence. 13:195-217
ISSN: 1793-6381
0218-0014
DOI: 10.1142/s0218001499000124
Popis: This paper addresses the problem of using domain generalization graphs to generalize temporal data extracted from relational databases. A domain generalization graph associated with an attribute defines a partial order which represents a set of generalization relations for the attribute. We propose formal specifications for domain generalization graphs associated with calendar (date and time) attributes. These graphs are reusable (i.e. can be used to generalize any calendar attributes), adaptable (i.e. can be extended or restricted as appropriate for particular applications), and transportable (i.e. can be used with any database containing a calendar attribute).
Databáze: OpenAIRE