Quenching for semidiscretizations of a heat equation with a singular boundary condition

Autor: Diabate Nabongo, Théodore K. Boni
Rok vydání: 2008
Předmět:
Zdroj: Asymptotic Analysis. 59:27-38
ISSN: 0921-7134
DOI: 10.3233/asy-2008-0889
Popis: We obtain some conditions under which the positive solution of the numerical approximation for the heat equation ut(x, t) = uxx(x, t),x ∈ (0, 1), t > 0, with the singular boundary condition ux(1, t) = −u−β(1, t), where β > 0 quenches in a finite time and estimate its semidiscrete quenching time. We also establish the convergence of the semidiscrete quenching time and obtain some results on numerical quenching rate and set. Finally we give some numerical results to illustrate our analysis.
Databáze: OpenAIRE