Сценарии критической вспышки численности инвазионного вида в модификации уравнения Гомпертца
Jazyk: | ruština |
---|---|
Rok vydání: | 2019 |
Předmět: | |
DOI: | 10.23671/vnc.2019.1.27734 |
Popis: | В работе обсуждается проблема моделирования вариантов развития ситуаций экстремального характера в популяционном процессе, способных возникать изза активного размножения чужеродных видов. Для математической формализации явлений использованы уравнения с отклоняющимся аргументом. В данном экологическом контексте интересно рассмотреть не возникновение циклов или свойств устойчивых колебательных режимов в решениях уравнений, а проведение поиска специфических переходных сценариев популяционной динамики. Предлагается последовательно ряд модификаций на основе уравнения Гомпертца, как оказалось, подходящего для совершенствования не менее обоснованно, чем модели Хатчинсона или Николсона. В вариантах с учетом функции сопротивления биотического окружения получены сценарии гибели популяции после вспышки и образования устойчивой малочисленной группы с прохождением предельно допустимой барьерной численности. Полученные вычислительные сценарии имеют практическую интерпретацию при анализе развития событий после вселения опасных новых видов в консервативные экосистемы. Усовершенствована оригинальным дополнением модель для случая существования явного критически низкого Lпорога численности, гибко корректирующая свойства популяционной динамики при интервально проявляющемся действии эффекта Олли. Полученные модельные сценарии сходны для группы инвазионных и опасных инфекционных процессов, что подтверждает нашу идею о том, что кибернические механизмы регуляции превалируют над видовой экологической специфичностью чужеродных популяций. №1 (2019) |
Databáze: | OpenAIRE |
Externí odkaz: |