ELM speaker identification for limited dataset using multitaper based MFCC and PNCC features with fusion score

Autor: Bharath K P, Rajesh Kumar M
Rok vydání: 2020
Předmět:
Zdroj: Multimedia Tools and Applications. 79:28859-28883
ISSN: 1573-7721
1380-7501
DOI: 10.1007/s11042-020-09353-z
Popis: In current scenario, speaker recognition under noisy condition is the major challenging task in the area of speech processing. Due to noise environment there is a significant degradation in the system performance. The major aim of the proposed work is to identify the speaker’s under clean and noise background using limited dataset. In this paper, we proposed a multitaper based Mel frequency cepstral coefficients (MFCC) and power normalization cepstral coefficients (PNCC) techniques with fusion strategies. Here, we used MFCC and PNCC techniques with different multitapers to extract the desired features from the obtained speech samples. Then, cepstral mean and variance normalization (CMVN) and Feature warping (FW) are the two techniques applied to normalize the obtained features from both the techniques. Furthermore, as a system model low dimension i-vector model is used and also different fusion score strategies like mean, maximum, weighted sum, cumulative and concatenated fusion techniques are utilized. Finally extreme learning machine (ELM) is used for classification in order to increase the system identification accuracy (SIA) intern which is having a single layer feedforward neural network with less complexity and time consuming compared to other neural networks. TIMIT and SITW 2016 are the two different databases are used to evaluate the proposed system under limited data of these databases. Both clean and noisy backgrounds conditions are used to check the SIA.
Databáze: OpenAIRE