Popis: |
Today, traditional Precise Point Positioning (PPP) method with high-cost geodetic grade Global Navigation Satellite System (GNSS) receivers has been used commonly for surveying, navigation, geodesy, geophysics and other engineering applications where dm-cm level accuracy is required. On the other hand, while smartphones have created a growing economic market in the world, they serve positioning, navigation and timing (PNT) services in varying accuracy levels to the users besides many other facilities. One of the most significant components of the smartphones involving multi-sensors for outdoor point-positioning and navigation is the embedded GNSS chipset. Especially, the world’s first dual-frequency GNSS smartphone produced by Xiaomi in May 2018, so-called Xiaomi Mi 8, brings a new aspect to PNT applications. In this study, a smartphone with dual-frequency embedded GNSS chipset was used to analyze the performance of PPP-Ambiguity Resolution (PPP-AR) method in engineering surveys. With respect to study aim, simultaneous static GNSS observations gathered with a geodetic grade GNSS receiver and a smartphone were conducted within a test setup. The static GNSS observations were repeated for 3 days and the campaign duration was 2 hours per day at the same daily time interval. All the raw GNSS observations were converted into Receiver Independent Exchange Format (RINEX) and processed by the relative point positioning method as a reference solution initially. Later, all observations were processed by the PPP-AR method. A widely used online post-processing GNSS service, namely CSRS-PPP, which was updated in August 2018 (GPSPACE to SPARK) were employed for PPP-AR solutions. As a conclusion, we analyze the performance of the embedded dual frequency GNSS chipset and assess the feasibility of them in different engineering surveys.Keywords: Smartphone Positioning, PPP-AR, Embedded GNSS Chipset, Dual-frequency, Engineering Surveys |