Sharp upper bound for the first eigenvalue
Autor: | G. Santhanam, Raveendran Binoy |
---|---|
Rok vydání: | 2013 |
Předmět: | |
Zdroj: | Geometriae Dedicata. 169:397-410 |
ISSN: | 1572-9168 0046-5755 |
DOI: | 10.1007/s10711-013-9863-0 |
Popis: | Let \(M\) be a closed hypersurface in a noncompact rank-1 symmetric space \((\overline{\mathbb{M }}, ds^2)\) with \(-4 \le K_{\overline{\mathbb{M }}} \le -1,\) or in a complete, simply connected Riemannian manifold \(\mathbb M \) such that \(0 \le K_\mathbb{M } \le \delta ^2\) or \(K_\mathbb{M } \le k\) where \(k = -\delta ^2\) or 0. In this paper we give sharp upperbounds for the first eigenvalue of laplacian of \(M\). |
Databáze: | OpenAIRE |
Externí odkaz: |