Distribution of Coefficients of Rank Polynomials for Random Sparse Graphs
Autor: | Dmitry Jakobson, Calum MacRury, Lise Turner, Sergey Norin |
---|---|
Rok vydání: | 2018 |
Předmět: |
Distribution (number theory)
Applied Mathematics 010102 general mathematics 0102 computer and information sciences 01 natural sciences Theoretical Computer Science Combinatorics Computational Theory and Mathematics 010201 computation theory & mathematics Discrete Mathematics and Combinatorics Rank (graph theory) Geometry and Topology 0101 mathematics Mathematics |
Zdroj: | The Electronic Journal of Combinatorics. 25 |
ISSN: | 1077-8926 |
DOI: | 10.37236/7133 |
Popis: | We study the distribution of coefficients of rank polynomials of random sparse graphs. We first discuss the limiting distribution for general graph sequences that converge in the sense of Benjamini-Schramm. Then we compute the limiting distribution and Newton polygons of the coefficients of the rank polynomial of random $d$-regular graphs. |
Databáze: | OpenAIRE |
Externí odkaz: |