From G2 geometry to quaternionic Kähler metrics
Autor: | Olivier Biquard |
---|---|
Rok vydání: | 2015 |
Předmět: |
Rank (linear algebra)
010102 general mathematics General Physics and Astronomy Geometry 02 engineering and technology Equivalence of metrics 16. Peace & justice 021001 nanoscience & nanotechnology 01 natural sciences symbols.namesake General theory symbols Mathematics::Differential Geometry Geometry and Topology 0101 mathematics Einstein 0210 nano-technology Mathematical Physics Distribution (differential geometry) Mathematics |
Zdroj: | Journal of Geometry and Physics. 91:101-107 |
ISSN: | 0393-0440 |
DOI: | 10.1016/j.geomphys.2015.02.002 |
Popis: | We review a construction of quaternionic Kahler metrics starting from a rank 2 distribution in 5 dimensions. We relate it to a more general theory about Einstein deformations of symmetric metrics. Finally we ask some questions on complete metrics and relate them to a Zoll phenomenon. |
Databáze: | OpenAIRE |
Externí odkaz: |