A novel UPML FDTD absorbing boundary condition for dispersive media
Autor: | Shi-quan Zhang, Fei Wang, Bing Wei, Debiao Ge |
---|---|
Rok vydání: | 2010 |
Předmět: | |
Zdroj: | Waves in Random and Complex Media. 20:511-527 |
ISSN: | 1745-5049 1745-5030 |
DOI: | 10.1080/17455030.2010.496005 |
Popis: | The dispersion relation and the reflectionless condition are obtained by Maxwell's curl equations in a uniaxial anisotropic medium and the phase-matching principle. On the basis of the shift operator finite difference time domain (SO-FDTD) method and the transform relation from the frequency domain to the time domain (jω replaced by ), an FDTD absorbing boundary condition available for three types of general dispersive medium models, i.e. Debye model, Lorentz model and Drude model, is given. Numerical results show that the presented scheme has good absorbing performance (the relative error is less than 10−3) for three typical dispersive models. This illustrates the generality and the high effectiveness of the presented scheme. |
Databáze: | OpenAIRE |
Externí odkaz: |